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LMSC-HREC D225916

FOREWORD

This Interim Final report presents the results of work performed by

personnel of the Lockheed-Huntsville Research & Engineering Center for

the Astronautics Laboratory of NASA-Marshall Space Flight Center under

Contract NAS8-25569, "Thermal Support for Space Shuttle." This work was

conducted in two phases.

The NASA Contracting Officer's Representative (COR) for Phase I of

this contract was Mr. R. R. Fisher, S&E-ASTN-PTB. The period of perform-

ance for this phase was from February to September of 1970. The COR for

Phase II of this work is Dr. K. E. McCoy, S&E-ASTN-PTC. The period of

performance for this phase is from February 1971 to the present. Work is

still in progress on this phase.

The Lockheed-Huntsville Project Engineer for this contract is William

G. Dean.
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Section 1

INTRODUCTION AND SUMMARY

The primary purpose of this contract is to provide thermal support of

the design of the Thermal Protection System (TPS) for the Space Shuttle

vehicle. The work to date has been conducted over a wide range of problems.

However, these can be grouped generally into two phases:

Phase I: Analyses in Support of MSFC "Point Design" Shuttle Configuration:
This work involved two tasks as follows:

* Generation of temperature boundaries of the space shuttle
"point design."

* Leading edge and nosecap TPS material investigation, and

Phase II: Support of Three TPS Test Facilities as Follows:

· MSFC 36 x 36-Inch Panel Radiant Lamp Test Facility

· MSFC Structural/Thermal Test Facility (STFF), and

* MSFC Hot-Gas 0 2 /H 2 Burner Test Facility.

This document summarizes the work done to date on each of these phases.

It is designated as an "interim final report" (since the contract is still in

progress) and combines the results of efforts under both phases to date.

Approximately 40 documents have been published under this contract,

most of which are discussed in this report. Also a discussion of several

miscellaneous tasks which do not fit any of the above categories is presented,

and a list of thermal analytical models developed under the contract is given.

/
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Section 2

TECHNICAL DISCUSSION

The work effort under this contract to date has consisted of a wide range

of tasks. For discussion purposes these tasks are grouped under the following

categories.

2.1 GENERATION OF TEMPERATURE BOUNDARIES FOR THE "POINT
DESIGN" SHUTTLE CONFIGURATION

An analysis was made on the MSFC Space Shuttle orbiter and booster

vehicles to generate temperature boundaries for these vehicles during atmo-

spheric reentry. The boundaries were defined as the lowest attitude at which

a vehicle can fly without exceeding the specified temperature at a given body

point. The boundaries were generated using the following as parameters:

allowable wall temperature, three angles of attack, two transition Reynolds

numbers, three heating rate methods and a heating rate margin of safety. A

discussion was presented of the effect of each parameter on the allowable

altitude for each vehicle. An analysis was also made to estimate the effect

on allowable altitude of flowfield assumptions and shape correction factors.

It is concluded that the heating rate method, the vehicle angle of attack, and

the allowable temperature are the parameters that most affect the tempera-

ture boundaries. This work is documented in Ref. 1. The work was done

using the computer program of Ref. 2.

2.2 LEADING EDGE AND NOSECAP MATERIALS INVESTIGATION

The purpose of this task was to: (1) survey available materials for

nosecap and leading edge application, and obtain available thermal and ablation

properties; (2) survey available computer programs for analyzing these ma-

terials; and (3) apply these materials and programs to determine leading edge,

nosecap, and selected protuberance region thermal protection system designs

and weights.

2

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D225916

A study was conducted in which various thermal protection system ma-

terials were applied to nosecap and leading edge areas of the MSFC Space

Shuttle orbiter and booster vehicles. Results are documented in Ref. 3.

Material thicknesses and weights were determined for each body area. The

results showed the nonreusable ablators to be the most efficient (from a

weight standpoint) of those materials studied. The Manned Spacecraft Center

carbon/carbon material, backed by an insulation such as Dynaquartz, was also

shown to be a very attractive material if it can be developed to the point of

being fully reusable. An increase in allowable backface temperature (between

the thermal protection system material and the substructure) of from 600 to

10000F was shown to yield a thermal protection system weight decrease of

about 40 to 50%. The computer program used for most of the analyses was

the NASA-MSC Charring Ablation program of Ref. 4.

2.3 SUPPORT OF MSFC TPS PANEL TEST FACILITY DESIGN AND
TESTING

The MSFC TPS Panel Test Facility is shown in Figs. 1 and 2. This is

a radiant heating test facility for testing Shuttle-type TPS panels. It consists

of a vacuum-tight panel holder for holding a panel 36x36 inches and a radiant

array with tungsten element tubular quartz lamps. The lamp reflector is

water-cooled, polished aluminum. The facility is capable of heating an area

of approximately 28x28 inches to a temperature of approximately 2500 F.

Research, Inc., designed and built the facility and their complete description

is given in Ref. 5. Lockheed-Huntsville provided some of the thermal analyses

in support of the design of this facility.

Four panels have been tested to date in this facility. These are: (1) an

L-605 calibration/checkout panel; (2) an L-605 Shuttle-type panel; (3) a Rene'

41 Shuttle-type panel; and (4) a titanium Shuttle-type panel. Lockheed supported

the instrumentation, test planning, testing, and data analyses of each of these

panels. On the calibration panel, analyses were performed to predict the lateral

heating rate uniformity in two directions on the panel surface. Thermocouples

3
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were used, data were taken, and results were compared with predictions.

The uniformity proved to be quite good as predicted by the analyses. This

panel also had a Microquartz insulation package which was instrumented

with thermocouples through its thickness.

A series of tests was run on this panel at three pressures: (1) 1 atm;

(2) 10 torr; and (3) 2x 10 4 torr. Data from these tests were used to verify

the thermal performance of the Microquartz/Inconel insulation package. This

work was completed several months ago but documentation was delayed due

to more urgent tasks. Documentation is now being completed in the form of

Ref. 6. As a result of this work, it was concluded that published Microquartz

thermal conductivity data could be used in conjunction with appropriate contact

resistances between the Microquartz and Inconel to obtain an accurate thermal

model of the insulation package. Figure 3 shows typical results of Ref. 6 in

the form of temperature-time history comparisons from experimental and

analytical results.

The L-605 panel, the Rene' 41 panel, and the titanium panel were all

tested for 100 thermal cycles. Figure 4 shows the L-605 panel. It consists

primarily of an outer corrugated skin with stiffeners, standoff clips, instru-

mentation package, aluminum angles and a flat-plate aluminum "tank wall

simulator." The panel is designed to simulate the initial Space Shuttle

booster metallic TPS and hydrogen tank configuration. It is approximately

36x36 inches. The Rene' 41 and titanium panels are similar to the L-605

panel except that the outer skin and standoff clips are changed from L-605

to Rene' 41 and titanium, respectively. Also the L-605 and Rene' 41 panels

have a 1.0-inch thick Microquartz insulation package while the titanium panel

has a 0.5-inch thick panel.

Tests were conducted at atmospheric pressure in the clean room and

at vacuum conditions in the MSFC 14-foot vacuum chamber in MSFC Bldg.

4557. Several types of tests were conducted such as those shown on the

following page.

4
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1. Raise panel outer skin to maximum temperature and
hold until inside primary aluminum temperature
reaches 2000 F.

2. Cyclic temperature profile tests to simulate a flight
temperature-time history.

3. TPS lap-joint gap leak tests at various pressure
differential values.

4. Rain and moisture effects tests.

The maximum allowable outer surface temperatures used were:

L-605 16000F

Rene'41 12000F

Titanium 600 0 F.

Several non-destructive evaluations (NDEs) were made on each panel during

the process of accumulating 100 cycles. Also, emissivity values were meas-

ured for use in analytical models of the panels.

All these panel tests were conducted by NASA personnel as well as data

recording and reduction. Lockheed assisted in the planning of types and methods

of testing, with instrumentation recommendations, with test monitoring, and with

experimental/analytical comparisons. Test plan inputs were written and instru-

mentation drawings were made. Approximately 95 thermocouples were used

on each panel. Also, on-site support and monitoring were provided for some of

the initial testing and when special test problems arose.

A large analytical model of the L-605 panel installed in the test facility

was developed for predicting temperatures. It consists of approximately 400

nodes and 2400 resistors. The model considers both radiation and conduction

and was run on the Lockheed Thermal Analyzer (Ref. 7) and Lockheed LOHARP

program (Ref. 8). The analytical model results have been compared with the

experimental data in Ref. 9 with very gratifying results. Figure 5 shows some

typical comparisons from Ref. 9.

5

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D225916

This L-605 model was modified to become the Rene'41 panel model and

the results of this new model were compared to the Rene' 41 panel data in Ref.

10. Again, results compared quite well. Figure 6 shows typical results of

this work.

A study was made of the L-605 panel data to determine if any noticeable

thermal degradation occurred due to the exposure to 100 thermal cycles. It

was concluded (Ref. 9) that there was no degradation within the accuracy of

the data taken.

Also a Columbium "panel" was tested on 23 November 1971 to determine

if the facility would reach 25000 F. This "panel" consisted of a single sheet

of Columbium with 12 thermocouples on the back, and a Microquartz insulation

package approximately 2.0 inches thick. The panel reached 2500 F in approx-

imately two minutes as shown on Fig. 7. This temperature was reached without

going to full power. However, some of the radiant quartz layers burned out.

This was thought to be due to the "smoke" from impurities being burned out of

the Microquartz insulation.

2.4 STRUCTURAL/THERMAL TEST FACILITY (STTF) SUPPORT

The work done in support of this facility falls into three categories which

are discussed separately as follows:

· Thermal support of STTF design

· Support of Prototype I, Test Article 1

* Support of STTF Checkout Article.

2.4.1 Thermal Support of STTF Design

2.4.1.1 STTF Description

Figure 8 is a sketch of the STTF. The facility is presently under con-

struction on the S-II Test Stand area at NASA-MSFC. It is a radiant heating

test apparatus capable of testing large structures up to a maximum size as

shown in the cross section of Fig. 9. The radiant array consists of a large

6
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number of modular units on adjustable stanchions for allowing testing of

different test article shapes. Three rows of modular units are used for a

total test region height of approximately 126 inches. A typical modular unit

is shown in Fig. 10. It consists of a water-cooled, polished aluminum reflec-

tor with end reflectors and lamp supports. Tubular quartz, tungsten filament

lamps are used.

The facility is designed to provide test temperatures on a thin-skin

metallic TPS as follows:

· Bottom Region, 2500°F

· Side Region, 1800°F

· Top Region, 1200 F.

These regions are shown on Fig. 9. Also, cooling-air jets are to be used in

the facility to provide forced cooling to the outer TPS surface to simulate

rapid cooldown during a flight.

A complete description of this facility is given in Ref. 11.

2.4.1.2 STTF Design Support

Lockheed provided thermal design support to NASA-MSFC during the

monitoring of the design of the STTF. Of particular concern was the problem

of being sure that enough power would be provided to reach the specified tem-

peratures. Factors which had to be considered were: (1) "chimney effects"

or natural convection losses; (2) radiant array "efficiency"; (3) wind losses;

and (4) adequacy of the forced cooling.

Several thermal models of the modular units were made for the purpose

of supporting the facility design. (See Table 1 for a list of these thermal models.)

The final model developed(used for prediction of power requirements) is docu-

mented in Ref. 12. It contains each lamp element and each quartz envelope as

an individual node. A Columbium TPS with Microquartz insulation was included

7
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in the model to simulate the test article. Natural and forced convection were

also included in the model. The methods used are being documented in Refs.

13 and 14 for natural and forced convection, respectively. This model was

used to predict power requirements for the top, bottom, and side regions and

to predict the cooldown capabilities of the air jets. The cooldown rates were

compared with those given as requirements in Ref. 11.

A summary of the results is given in Table 2, where predicted power

requirements are compared with the power being provided by Research, Inc.

It was concluded that more than enough power is being provided. Results of

the cooldown work showed that the cooldown rates can be met by natural convec-

tion alone down to a TPS temperature of 500 to 900°F depending on the location.

Below this temperature the air jets will cool the TPS at an adequate rate down

to a temperature of approximately 200 0 F. It is felt that 2000F would be a low

enough temperature for simulation purposes. If not, the larger jets should be

provided which could be accomplished by replacing the air orifices in the mod-

ular unit reflectors with larger orifices. It is understood that these orifices

are removable.

In addition to the power requirements, cursory analyses were done to

estimate the cooling-water requirements for the radiant array. It was con-

cluded that the water flow rate being provided should be sufficient.

2.4.2 Support of Prototype I, Test Article 1

2.4.2.1 Prototype I, Test Article 1 Description

One of the first test articles planned for the STTF is known as Prototype

I, Test Article 1. Figure 11 shows an isometric, cutaway view of this structure

which consists of a cylindrical LH 2 tank, having hemispherical domes and cylin-

drical skirts, all of which are covered with TPS panels. The TPS is shown in

"Detail A" of Fig. 12. It consists of a corrugated outer skin, with standoff clips,

Microquartz insulation, and a titanium support plate. The bottom of the cylin-

drical tank is supported by shear panels, giving a D-shape cross section (as

shown on Fig. 13).

8
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2.4.2.2 Prototype I, Test Article 1 Analytical Support

Support by Lockheed of this test article consisted of: (1) temperature-

time history prediction, for various test conditions; (2) temperature gradient

predictions; (3) structural analyses; and (4) instrumentation recommendations.

For the temperature predictions two sections through the structure were

considered as shown on Fig. 11. The first section was at the middle of the tank

between rings 6 and 7. The second section was near the tank dome/tank skirt,

and tank cylindrical section junction between rings 3 and 4. Figure 13 shows

the section between rings 6 and 7. At this location a number of two-dimensional

thermal models were developed and used for temperature calculations (See Figs.

13 and 14 for the locations of these various model locations.) Figure 15 shows

an isometric view of the structure and location of "cuts" that were used in the

modeling. Note that two sets of models were developed, one at ring 6 and one

between rings 6 and 7. A total of eight models was developed. Those at ring

6 were designated as Regions 1-SP through 3-SP and Region 4, and those between

rings 6 and 7 were designated as Regions 1-A through 4-A. Figure 16 shows a

typical nodal arrangement for one of these models (Region 3-SP). The models

extend from the outer TPS skin all the way into the LH 2 inside the tank. These

two-dimensional models were used to predict temperature-time histories for

several test conditions which were used in the stress analyses of Refs. 15 and

16. The results from these thermal models are documented in Refs. 17 through

25.

The locations of the models developed in the Tank/Dome/Skirt area of

the Prototype I, Test Article 1 structure are shown in Fig. 17. These models

were designated as Regions I through V. The complexity of the structure, as

seen by the cross-sectional view of Fig. 18 required development of three-

dimensional models rather than two-dimensional as in the middle of the tank

at ring 6. These models are also 40 inches long where the two-dimensional

models are 20 inches long. They included detailed radiation view factors and

9
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radiation connectors as calculated by the program of Ref. 8. All two- and

three-dimensional models were run on the Lockheed Thermal Analyzer pro-

gram of Ref. 7. Results of the three-dimensional models are documented in

Ref. 26. Figure 19 shows a typical nodal network for one of these models.

A model of a single shear panel at ring 6 was developed early in the

program before the two-dimensional results were available. This was done

to get a quick estimate on the shear panel temperatures to see if there were

any particular problem areas. This work is documented in Ref. 27.

A model of a single standoff clip with conduction and radiation was also

developed. This was designated the "Heat Short" model and is documented

in Ref. 28. Results of this model were used in the TPS stress analysis of

Ref. 15.

In addition to the thermal analyses work, Lockheed also supported the

Prototype I, Test Article 1 with instrumentation recommendations. A total

of 612 thermocouple locations was specified initially for taking data during

thermal testing. This was later reduced to 448 when the calibration article

was introduced into the program (see Section 2.4.3).

An analysis was also done to calculate the LH 2 boiloff rate from the

tank during a typical test. Results are shown on Fig. 20.

Lockheed was also involved in reviewing and commenting on the various

versions of the test plans for this test article.

2.4.2.3 Thermal Protection System Stress Analysis

A structural analysis was performed on the TPS center section of the

TPS Prototype I, Test Article 1. This analysis determined the allowable

stresses for the components at room and elevated temperatures, solved for

the maximum combined mechanical and thermal stress levels occuring during

10
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the thermal test program, and computed the margins of safety to ensure the

structural integrity of the test article. Safety factors of 1.1 on the yield and

1.4 on the ultimate were used in the margin of safety calculations. No safety

factor was applied to the thermal component of the stresses.

The TPS structure analyzed was typical of the region between rings 4

and 8, well within the area of applied heat. The applied heat rates were

assumed to be uniform longitudinally, while varying symmetrically around the

circumference. Due to the symmetry of the structure and applied heat rates,

only one-fourth of the panel structure was modeled, thus, allowing for much

greater detail in the finite element computer models.

The above work is documented in Ref. 15.

2.4.2.4 Primary Structure Stress Analysis

A structural analysis of the center tank section of the Prototype I,

Test Article 1 was performed. This analysis determined the allowable stresses

for the components at room and elevated temperatures, solved for the maximum

combined mechanical and thermal stress levels occurring during the thermal

test program, and computed the margins of safety to ensure the structural

integrity of the test article. Safety factors of 1.1 on the yield and 1.4 on the

ultimate were used in the margin of safety calculations.

The center tank structure was considered to be the region between rings

4 and 8, well within the area of applied heat. The applied heat rates were

assumed to be uniform longitudinally, while varying symmetrically around the

circumference. Due to the symmetry of the structure and applied heat rates,

only one-half of the structure need to be modeled, thus, allowing for much

greater detail in the finite element computer model.

11
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The center tank structure was analyzed for the following local conditions:

· Load Condition A - Maximum Heating
Rates (t =324 seconds)

* Load Condition B - Maxium Temperature
Levels (t= 560 seconds)

* Load Condition C - Flight Profile Heating
Rates (t = 600 seconds)

* Load Condition D - Tank Proof Pressure
(P = 63.0 psi).

This work is documented in Ref. 16.

2.4.3 Structural Thermal Test Facility Calibration Article Support

Lockheed also participated in the selection of a test article for the

checkout of the Structural Thermal Test Facility (STTF). The problem in-

volved was that of being able to checkout the 2500°F capability of the facility

without having to build an expensive test item of a 2500°F material such as

Columbium. Several concepts were considered such as a large movable

Columbium panel, a water-filled concept, etc. However, the article selected

consisted of L-605 "panels" or shingle mounted on a steel frame. It is the

"maximum envelope" shape, that is, the largest shape the STTF is capable

of testing. A test plan is now being formulated on the checkout procedure

to be used with the test article/facility. Instrumentation was recommended

which consisted of 398 thermocouples, eight "total iq" type calorimeters, and

20 radiometers.

2.5 NASA-MSFC HOT GAS TEST FACILITY SUPPORT

2.5.1 Facility Description

The Hot Gas Facility is shown in Figs. 21 and 22. It consists of the

basic parts shown on the following page.

12

LOCKHEED- HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D225916

* Combustion chamber

· Throat section

· Nozzle (four sections; see Fig. 22)

* Front diffuser (top and bottom
sections)

· Rear diffuser (six sections)

· Diffuser centerbody

· Centerbody support section

· Leading edge specimen.

The facility burns gaseous 0 2 /H 2 at an oxygen-to-fuel ratio of approximately

12 to 1. The Mach number at the nozzle exit plane is about 4.0. It runs at

a chamber pressure of up to 140 to 150 psia. All parts of the facility are

wate r- c oole d.

2.5.2 Facility Design and Analyses Support

Lockheed was involved in the thermal design of the Hot Gas facility in

the following areas:

* Flowfield calculations for various
chamber pressures

* Heating rate calculations on all
surfaces exposed to the flow from
the ejector face to the diffuser exit.

* Cooling water flow rates for various
pressures in approximately 11 water
circuits

* Cooling water temperatures (boiling
calculations were necessary in some
areas)

* Facility wall temperature in some
areas exposed to the hot gas flow
field.

13
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As a result of the cooling water temperature predictions, some of the water

flow circuits were changed from the initial design to lower the bulk water

temperature. Several runs have now been made in this facility and most of

the calculated water temperature agreed favorably with the measured values.

An exception to this is the rear diffuser region where the measured values are

quite a bit higher. This is presently being checked out and is thought to be

due to shock/boundary interactions inside the diffuser.

Work was also done to determine if the facility would run with the

leading edge model at angle of attack. It was concluded that the facility

would probably run with 10 degrees but not at 30 degrees (the two values in-

vestigated).

Also, an investigation was made to determine the temperature on a

movie camera window mounted on the side of the facility.

A summary of the work on the Hot-Gas Facility is documented as

follows:

· For the flow fields (Refs. 29 and 30)

· For the leading edge at angle of attack
(Ref. 31)

· For heating rates (Refs. 30 and 32)

· For cooling water analyses (Refs. 33
through 36).

2.5.3 Hot Gas Facility Test Specimen Analytical Support

In addition to the facility design support, analyses were also done on

test articles. Three test articles were involved:

14
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* A water-cooled leading edge calibration
model

* A carbon/carbon shuttle wing leading edge
specimen made by McDonnell Douglas

* Panel-type insulation and/or ablative
materials.

On the calibration model, the cooling water requirements and tempera-

tures were calculated. This work is documented in Ref. 33. Instrumentation

recommendations were also made for pressures and heating rate measure-

ments, as given in Ref. 37. Data from this model are now being compared

with the analytical results with fair agreement. However, the data are pre-

liminary at this time.

In support of the carbon/carbon leading edge specimen, several thermal

analytical models have been made. These are:

· Initial hand calculations (Ref. 38)

· Two-dimensional model (Ref. 39)

· Three-dimensional model (Ref. 40)

· Three-dimensional model (with
refinements after inspection of the
model when delivered to MSFC)
(Ref. 41; see Fig. 23).

The first models were crude but provided quick numbers for support of the

facility design, that is to check to see if the facility could provide the needed

temperatures on the specimen. As time progressed the models were im-

proved and refined. The latest models show that the carbon/carbon leading

edge should reach Z5800F for a chamber pressure of 14Z psia, and 2410 0 F

for a chamber pressure of 76 psia. The Rene' 41 plate on top of the model

should reach 1560 and 14500F for P = 142 and 76 psia, respectively.

15
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Work on the panel specimen is just beginning. It is planned that these

tests would be run with the panel of "spray-on" foam insulation mounted on

top of the centerbody, just downstream of the leading edge specimen. Work

is also now in progress to provide a means of simulating lower heating rates

during an ascent trajectory of the shuttle. Two means are being investigated:

adding either gaseous N 2 or liquid water to the flow in the combustion chamber.

It is also hoped that this can be used to program the heating rate time history

to simulate a flight profile.

2. 5.4 Pilot Facility Support

In addition to the Hot Gas facility support, work was also done on a

smaller O 2 /H 2 , O/F = 12 to 1 facility. This was done to check the validity

of analytical methods being used. Boundary layer temperature profiles and

heating rates inside the nozzle were predicted and compared with experimental

results. Agreement was favorable as documented in Refs. 29 and 42.

2.6 OTHER MISCELLANEOUS TASKS

Several other tasks were performed which did not fall into any of the

preceding categories. These include:

• A thermal analysis of a heat-short/fastener area on an
HCF panel attachment design. This analysis showed
that the design was not acceptable.

* A study to determine the effect of emissivity values on
internal heat transfer rate between internal surfaces
such as Microquartz/L-605, and titanium support sheet/
LH 2 tank wall. This work is documented in Ref. 43.

* Instrumentation recommendation for a "Langley" Test
Panel. It is planned that 42.5 x 60-inch Rene' TPS panel
will be tested in the Langley 8-foot Structures Tunnel.

16
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Instrumentation recommendations for this panel have
now been completed. One-hundred twenty nine thermo-
couples were recommended.

* A study of the flow field resulting from the liftoff of a
space shuttle configuration using two large solid rocket
motors (SRMs),in combination with the main orbiter
engine.

For the latter study the analysis will include liftoff to SRM booster stage

separation. It is anticipated that starting and operation of the orbiter main

engines on the launch pad will be difficult. This problem arises because the

orbiter engines are configured to operate at high altitudes and thus have high

area ratio exhaust nozzles. The exit pressure on the nozzles is much lower

than sea level ambient conditions, even at full chamber pressure. Therefore,

the nozzle always operates in an overexpanded mode at sea level. The starting

transient in the chamber pressure creates an even more severe condition. To

permit the nozzle pressure to equilibrate with the ambient pressure, a shock

forms in the nozzle flow field and produces a subsequent separation of flow at

some point on the nozzle wall. Experimental results obtained with the J-2

engine have shown that: (1) the separation occurs in a random fashion within

the nozzle; (2) the separation region is constantly moving, sometimes in a

spinning mode; (3) high side loads on the engine bell are produced; and (4)

detrimental heating on nozzle walls is produced when the internal shock con-

tacts the nozzle wall. It is anticipated that these problems will be encountered

with the orbiter main engines.

Various corrective measures for this problem have been discussed.

These include: (1) nozzle plugs of various configurations and materials;

(2) constant area extensions to the nozzles; and (3) boundary layer injection

and/or suction. A study has been initiated to conduct cursory analyses of the

nozzle plug concept being considered. An analysis is being conducted to pre-

dict the flow field resulting from a blunt-nose plug being located in an orbiter

nozzle. To accomplish this study, a representative blunt nose and plug after-

body shape and plug location will be selected. The flow field adjacent to the

17
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blunt nose region will then be solved. This information will then be utilized

to predict the flow field in the orbiter nozzle with the plug in place. The

results of the study will be: (1) the pressure distribution on the nozzle and

plug walls; (2) the location of the shock emanating from the blunt nose in the

flow field; and (3) engine performance with the plug in place.

2.7 SUMMARY OF THERMAL MODELS

Table 1' gives a list of the thermal models developed to date under this

contract.

18
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Table 1

LIST OF THERMAL MODELS GENERATED
FOR SPACE SHUTTLE SUPPORT CONTRACT

Model Name/Description

1. L605 Test Panel ( - 2000 resistors)

a. Mod. I (turn 90 degrees)

2. Heat short through flexible clip (3-D
radiation and conduction)

a. Mod. for Prototype I (general)

b. Mod. for Prototype I (L-605/shear
panel area)

c. Mod. for Prototype I (Rene'/shear
panel area)

d. Mod. for Prototype I (Rene'/tank)

e. Mod. for Prototype I (Ti/tank area)

3. 2-D through L605 calibration panel
(direction No. 1)

4. 2-D through L605 calibration panel
(direction No. 2)

5. 1-D through L605 calibration panel

6. 1-D through Prototype I

a. Zone IV (13900 F)

b. Zone III, V (15000 F)

c. Zone II, VI (12000 F)

d. Zone I (16000 F)

e. LH 2 fill and hold

7. 2-D at splice between Rene'/Ti Proto-
type I

a. "Cut 1"

b. "Cut 2"
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Table 1 (Continued)

8. "Big Picture" of Prototype I (150 nodes)

a. Mod. with more nodes

b. Mod. with convective effects

9. HFC Heat-Short/Fastener

10. Carbon/Carbon Leading Edge in nozzle
duct

a. Hand-calculation model

b. 2-D model with external/internal
insulation (18 nodes)

c. 3-D model with 85 nodes

11. Prototype I facility calibration maximum
envelope model (boilerplate)

12. Hot Gas Facility movie window

13. Shear panel at Ring 6

14. 2-D Region 1 model. L605 at Prototype I
bottom centerline (13900F outer skin
temperature)

a. Version 1 (cut through shear panel at
Ring 6) Model 1-SP

b. Version la (cut through shear panel
area between Rings 6 - 7)

15. 2-D Region 2 model through Prototype I0
L605 at boundary between 1390 and 1500 F
temperature zones

a. Version 2 (cut through shear panel at
Ring 6) Model 2-SP

b. Version 2a (cut through shear panel
area between Rings 6 - 7)

16. 2-D Region 3 model through Prototype I
at Rene'/L605 splice

a. Version 3 (cut through shear panel at
Ring 6) Model 3-SP

b. Version 3a (cut through shear panel
area between Rings 6 - 7)
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Table 1 (Concluded)

17. 3-D LH 2 Tank Dome/Skirt Model at

Rene'/Ti splice on Prototype I

18. Same as 17 but at the Rene'/L605
splice

19. Same as 17 but at the L605, 1500/
13900 F junction

20. Same as 17 but at the bottom center-
line (L605, 13900 F)

21. Same as 17 but at the top centerline
(Titanium)

22. Hot-Gas Facility nozzle fourth
section (without water cooling)

23. Prototype I calibration structure
response model

24. Prototype I radiant array modular
unit

Version 1: 55 lamps
Version 2: 27 lamps
Version 3: 10 lamps

25. Prototype I radiant array quartz
lamp

26. Detailed tank/dome skirt model at
end of lamp region

27. Model of curved bottom portion of
radiant array
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Fig. 1 - Overall View of NASA-MSFC TPS Panel Radiant Heating Test Faci l i ty 
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Fig. 2 - Closeup View of NASA-MSFC TPS Panel Radiant Heating Test 
Faci l i ty During a Typical Test 
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Fig. 3 - Typical Results from Ref. 6. (Inconel Temperature Profile at a Pressure
of 2 x 10 - 4 Torr - TPS Panel Test Number 22)
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TPS Panel Without L-605 Skin Showing Ins t rumenta t ion 

L-605 Skin with Stiffeners Welded in Posi t ion 
(Skin upside down on table) 

Fig . 4 - L-605 Pane l Photographs Before Testing Showing Insulation 
Packages , Standoff Cl ips , Stiffeners, and Outer Skin 
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Rene 41 Panel Thermal Model

_..... Node 30 (Driven to this
Profile)
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LMSC-HREC D225916

Section Between Rings 6 and
(See Figs. 13 and 14) - -

-Section Between
Rings 3 and 4
(See Figs. 17
and 18)

S-IVB Type
Insulation

- LH 2 Tank Dome

- Cylinder
Skirt

- Shear
Panel

Fig. 11 - Isometric Cutaway View of Prototype I, Test Article 1
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LMSC-HREC D225916

ZONE X

St
P

hear
anel\

1I 
ZO20E V
L-605

Fig. 13 - Cross-Sectional View of Prototype I - Test Article 1 Showing
Location of Two-Dimensional Models Between Rings 6 and 7
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LMSC-HREC D225916

ZONE I

Fig. 14 - Cross-Sectional View of Prototype I - Test Article I Showing
Location of Two-Dimensional Models at Ring 6
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. LMSC-HREC D225916 .

-Outer Skin

Fig. 15 - "Cut" Location for Two-Dimensional Model
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LMSC-HREC D225916

Fig. 17 - Cross-Sectional View of Prototype I, Test Article 1
Between Rings 3 and 4 Showing Location of Regions
Where 3-D Models Were Developed
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LMSC-HREC D225916

Standoff Panel
(L-605)

1" Microquartz
Insulation

L Stiffener

Outer Heat
Shield (L-605)

Fig. 19 - Typical Nodal Breakdown of
Region I, (from Ref. 26)

Thermal Model at Ring 4,
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